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Applications of Quantum Signal Processing

Construct quantum algorithms for many numerical problems with a proper
set of phase factors.

Quantum linear system problem, x−1,

Hamiltonian simulation, e−itx ,

Thermal state preparation problem,
e−βx

· · · · · ·
Fig: Polynomial approximation of 1

x
.
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Quantum Signal Processing(QSP)

Given a sequence of phase factors Φ := (φ0, · · · , φd) ∈ [−π, π)d+1, define

U(x ,Φ) := e iφ0Ze i arccos(x)X e iφ1Ze i arccos(x)X · · · e iφd−1Ze i arccos(x)X e iφdZ .
(1)

where x ∈ [−1, 1], X :=

(
0 1
1 0

)
,Z :=

(
1 0
0 −1

)
are Pauli matrices.

I The real component of the upper-left matrix element 1

g(x ,Φ) := Re[U(x ,Φ)11] (2)

can be any real polynomial with parity (d mod 2) and of degree ≤ d
up to scaling.

1A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, Quantum singular value transformation
and beyond: exponential improvements for quantum matrix arithmetics, 2018.
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How to find phase factors

Recent progress:

Gilyén-Su-Low-Wiebe [STOC’19],

Haah [Quantum’19],

Dong-Meng-Whaley-Lin [Phys.Rev.A’21],

Chao-Ding-Gilyén-Huang-Szedegy [arXiv:2003.02831].

I The first two methods are constructive, but need to find the roots of
high degree polynomials to high precision.

I The third method is an optimization based method and imposes the
symmetry constraint on the phase factors.
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Optimization problem

Given a polynomial f ∈ R[x ] of degree d , with parity (d mod 2) and
maxx∈[−1,1] |f (x)| ≤ 1, the optimization problem is

Φ∗ = argmin
Φ∈[−π,π)d+1,

symmetric

F (Φ), F (Φ) :=
1

d̃

d̃∑
k=1

|g(xk ,Φ)− f (xk)|2 , (3)

where d̃ := dd+1
2 e and xk = cos

(
2k−1

4d̃
π
)

, k = 1, ..., d̃ are positive

Chebyshev nodes of T
2d̃

(x).

I The selection of T
2d̃

(x) is enough, because it matches the degree of
freedom. For convenience, we choose the first half of phase factors
(φ0, · · · , φd̃−1

) as free variables.

I Usually scale the L∞ norm of f to be less than 1 in order to enhance
numerical stability.
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Symmetric phase factors

Theorem 1 (Existence and uniqueness)

There exists a unique set of symmetric phase factors Φ := (φ0, φ1, · · · , φ1,
φ0) ∈ Rd such that

U(x ,Φ) =

(
P(x) iQ(x)

√
1− x2

iQ(x)
√

1− x2 P∗(x)

)
, (4)

if and only if P ∈ C[x ] and Q ∈ R[x ] satisfy

1. deg(P) = d and deg(Q) = d − 1.

2. P has parity (d mod 2) and Q has parity (d − 1 mod 2).

3. Normalization condition: ∀x ∈ [−1, 1], |P(x)|2 + (1− x2)|Q(x)|2 = 1.

4. If d is odd, then the nonzero leading coefficient of Q is positive.

Here, Rd :=

{
[0, π)k × [−π, π)× [0, π)k if d = 2k , k ∈ N∗,
[0, π)d+1 otherwise.
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Global minimizer of the optimization problem

I There is a bijection between the global minimizer and the pair of
(P,Q) satisfying the conditions 1-4 in Theorem 1.

I The global minimizer is not unique.

Fig: The contour of the objective function.

f (x) = x2 − 1
2{

PIm = ±
√

3
2 (2x2 − 1)

Q = ±2x{
PIm = ±

√
3

2

Q = ±x
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Find all global minimizers

I We notice that Haah’s method and GSLW method can be modified
for symmetrical phase factors, but provide only the global minimizer
around (π4 , 0, · · · , 0).

I We propose the generalized versions of both methods which are able
to find all global minimizers to the optimization problem.

Generalized
Haah’s method

Generalized
GSLW method

Symmetrized
Haah’s method

Symmetrized
GSLW method

equivalent

Jiasu Wang (UCB) May 19, 2021 8 / 12



Characterize all global minimizers

Theorem 2

Given f (x) ∈ R[x ] with maxx∈[−1,1] |f (x)| < 1, P ∈ C[x ] and Q ∈ R[x ]
satisfy

1. PRe(x) = f (x),

2. the conditions 1-4 in Theorem 1,

if only if there exists a multiset D̃ such that

1. D̃ ] D̃−1 = S, where S contains all roots of 1− f ( z+z−1

2 )2 with

multiplicity and D̃−1 := {z−1 : z ∈ D̃},
2. D̃ is closed under complex conjugation and additive inverse,

3. PIm( z+z−1

2 ) = c1
e(z)+e(z−1)

2 and Q( z+z−1

2 ) = c2
e(z)−e(z−1)

2(z−z−1)
, where

e(z) := z−d
∏

r∈D̃(z − r) and c2
1 = c2

2 =
1−f ( z+z−1

2
)2

e(z)e(z−1)
∈ R+.

4. If d is odd, then c2 > 0.
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Existence of local minimizer

The local minimizer exists for d ≥ 3. Here is an example.

Fig: The contour of the objective function on the
hyperplane spanned by the eigenvectors corresponding to
the two largest eigenvalues.

d = 4

Objective value: 1.33e − 2

Eigenvalues of Hessian matrix:

(0.1075, 4.4849, 7.7454)
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Others

I The global energy landscape is bad.
I However, the optimization problem is locally strong convex around

(π4 , 0, · · · , 0) thanks to the symmetry constraint.
I This accounts for the good performance of optimization algorithms

around that point.
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Fig: The convergence rate of different global minimizers
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Thank you!
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