QUIZ 2 VERSION A AND B

JIASU WANG

1. (3 points) Given

$$
\mathbf{a}=\left[\begin{array}{l}
6 \\
5
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
2 \\
-4
\end{array}\right] .
$$

(1) Write down the parametric equation of the line through \mathbf{a} and \mathbf{b}.

Solution: $\mathbf{x}=\left[\begin{array}{l}6 \\ 5\end{array}\right]+t\left[\begin{array}{c}2 \\ -4\end{array}\right]$.
(2) Write down the parametric equation of the line through a parallel to \mathbf{b}.

Solution: $\mathbf{x}=t\left[\begin{array}{l}6 \\ 5\end{array}\right]+(1-t)\left[\begin{array}{c}2 \\ -4\end{array}\right]$.
2.(3 points) Determine if \mathbf{b} is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$ and \mathbf{a}_{3}. If so, write down the linear combination.

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}
1 \\
3 \\
9
\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{c}
1 \\
5 \\
25
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
-1 \\
-2 \\
8
\end{array}\right]
$$

Solution: $\mathbf{b}=3 \mathbf{a}_{1}-6 \mathbf{a}_{2}+2 \mathbf{a}_{3}$

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}
1 \\
3 \\
9
\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{c}
1 \\
4 \\
16
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
-1 \\
-3 \\
-7
\end{array}\right]
$$

Solution: $\mathbf{b}=\mathbf{a}_{1}-3 \mathbf{a}_{2}+\mathbf{a}_{3}$
3.(3 points) Determine if the vectors are linearly independent.

$$
\mathbf{a}_{1}=\left[\begin{array}{c}
1 \\
-2 \\
-3
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{c}
1 \\
6 \\
5
\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{c}
2 \\
-4 \\
-3
\end{array}\right]
$$

Solution: Yes

$$
\mathbf{a}_{1}=\left[\begin{array}{c}
1 \\
-2 \\
-3
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}
1 \\
6 \\
5
\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{c}
2 \\
-4 \\
-2
\end{array}\right]
$$

Solution: Yes

