Math 54 Worksheet Constant Coefficient Linear Systems

Part A

These questions test your knowledge of the core concepts and computations.

1. Consider the system $\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)$ with

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & \sqrt{3} \\
\sqrt{3} & -1
\end{array}\right]
$$

(a) Show that the matrix \mathbf{A} has eigenvalues $r_{1}=2$ and $r_{2}=-2$ with corresponding eigenvectors $\mathbf{u}_{1}=\left[\begin{array}{c}\sqrt{3} \\ 1\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{c}1 \\ -\sqrt{3}\end{array}\right]$.
(b) Give a general solution to this linear system

Solution:

(a)

$$
\begin{gathered}
\operatorname{det}\left(A-r I_{2}\right)=\operatorname{det}\left[\begin{array}{cc}
1-r & \sqrt{3} \\
\sqrt{3} & -1-r
\end{array}\right] \\
(1-r)(-1-r)-3=0 \\
\Longrightarrow r^{2}=4 \Longrightarrow r= \pm 2
\end{gathered}
$$

For $r=2$,

$$
\operatorname{Nul}\left[\begin{array}{cc}
-1 & \sqrt{3} \\
\sqrt{3} & -3
\end{array}\right]=\operatorname{Span}\left(\left[\begin{array}{c}
\sqrt{3} \\
1
\end{array}\right]\right)
$$

For $r=-2$,

$$
\operatorname{Nul}\left[\begin{array}{cc}
3 & \sqrt{3} \\
\sqrt{3} & 1
\end{array}\right]=\operatorname{Span}\left(\left[\begin{array}{c}
1 \\
-\sqrt{3}
\end{array}\right]\right)
$$

(b) A general solution to the system is $\mathbf{x}(t)=c_{1}\left[\begin{array}{c}\sqrt{3} e^{2 t} \\ e^{2 t}\end{array}\right]+c_{2}\left[\begin{array}{c}e^{-2 t} \\ -\sqrt{3} e^{-2 t}\end{array}\right]$
2. Use the substitution $x_{1}=y, x_{2}=y^{\prime}$ to convert the linear equation $a y^{\prime \prime}+b y^{\prime}+c y=0$, where a, b, and c are constants, into a normal system. Show that the characteristic equation for this system is the same as the auxiliary equation for the original equation. Solution:

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0 \\
\Longrightarrow y^{\prime \prime}=\frac{-b y^{\prime}-c y}{a}=\frac{-b x_{2}-c x_{1}}{a} \\
\Longrightarrow \mathbf{x}^{\prime}=\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
y^{\prime} \\
y^{\prime \prime}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
\frac{-b x_{2}-c x_{1}}{a}
\end{array}\right] \\
\Longrightarrow x_{1}\left[\begin{array}{c}
0 \\
-c / a
\end{array}\right]+x_{2}\left[\begin{array}{c}
1 \\
-b / a
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-c / a & -b / a
\end{array}\right] \mathbf{x}=A \mathbf{x} \\
\operatorname{det}\left(A-\lambda I_{2}\right)=(-\lambda)(-b / a-\lambda)+c / a=0 \\
\Longrightarrow \lambda^{2}+b / a \lambda+c / a=0 \\
\Longrightarrow a \lambda^{2}+b \lambda+c=0
\end{gathered}
$$

Thus, the characteristic equation for this system is the same as the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$.

Part B

These questions are generally more challenging, often highlighting important subtleties. They require a deeper understanding of each concept and the interrelations between them.
3. Find a general solution of the system $\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)$ for the given matrix \mathbf{A}.

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & -4 \\
2 & -2
\end{array}\right]
$$

Solution:

We can find the eigenvalues of A to be $\lambda_{1}=2 i$ and $\lambda_{2}=-2 i$, with corresponding eigenvectors $\mathbf{v}_{1}=\left[\begin{array}{c}1+i \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}1-i \\ 1\end{array}\right]$. Use the following equations:

$$
\begin{aligned}
& \mathbf{x}_{1}(t):=e^{\alpha t} \cos \beta t \mathbf{a}-e^{\alpha t} \sin \beta t \mathbf{b} \\
& \mathbf{x}_{2}(t):=e^{\alpha t} \sin \beta t \mathbf{a}+e^{\alpha t} \cos \beta t \mathbf{b}
\end{aligned}
$$

Here, $\alpha=1, \beta=1, \mathbf{a}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Thus, we have the following:

$$
\begin{aligned}
& \mathbf{x}_{1}(t):=e^{t} \cos t\left[\begin{array}{l}
1 \\
1
\end{array}\right]-e^{t} \sin t\left[\begin{array}{l}
1 \\
0
\end{array}\right]=e^{t}\left[\begin{array}{c}
\cos t-\sin t \\
\cos t
\end{array}\right] \\
& \mathbf{x}_{2}(t):=e^{t} \sin t\left[\begin{array}{l}
1 \\
1
\end{array}\right]+e^{t} \cos t\left[\begin{array}{l}
1 \\
0
\end{array}\right]=e^{t}\left[\begin{array}{c}
\sin t+\cos t \\
\sin t
\end{array}\right]
\end{aligned}
$$

Thus, we have:

$$
\mathbf{x}(t)=c_{1} e^{t}\left[\begin{array}{c}
\cos t-\sin t \\
\cos t
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{c}
\sin t+\cos t \\
\sin t
\end{array}\right]
$$

4. Show that $\mathbf{x}_{1}(t)$ and $\mathbf{x}_{2}(t)$ given by equations

$$
\begin{aligned}
& \mathbf{x}_{1}(t):=e^{\alpha t} \cos \beta t \mathbf{a}-e^{\alpha t} \sin \beta t \mathbf{b} \\
& \mathbf{x}_{2}(t):=e^{\alpha t} \sin \beta t \mathbf{a}+e^{\alpha t} \cos \beta t \mathbf{b}
\end{aligned}
$$

can be obtained as linear combinations of $\mathbf{w}_{1}(t)$ and $\mathbf{w}_{2}(t)$ given by equations

$$
\begin{aligned}
& \mathbf{w}_{1}(t)=e^{r_{1} t} \mathbf{z}=e^{(\alpha+i \beta) t}(\mathbf{a}+i \mathbf{b}) \\
& \mathbf{w}_{2}(t)=e^{r_{2} t} \overline{\mathbf{z}}=e^{(\alpha-i \beta) t}(\mathbf{a}-i \mathbf{b})
\end{aligned}
$$

Note that $\alpha+i \beta$ and $\mathbf{a}+i \mathbf{b}$ are eigenvalue and eigenvector for A.

Solution:

$$
\mathbf{w}_{1}(t)=e^{(\alpha+i \beta) t}(\mathbf{a}+i \mathbf{b})=e^{\alpha t} e^{i \beta t}(\mathbf{a}+i \mathbf{b})
$$

Note that $e^{i \beta t}=\cos \beta t-i \sin \beta t$:

$$
\begin{gathered}
\mathbf{w}_{1}(t)=e^{\alpha t}(\cos \beta t-i \sin \beta t)(\mathbf{a}+i \mathbf{b}) \\
\mathbf{w}_{1}(t)=e^{\alpha t} \cos \beta t \mathbf{a}+i e^{\alpha t} \sin \beta t \mathbf{a}+i e^{\alpha t} \cos \beta t \mathbf{b}-e^{\alpha t} \sin \beta t \mathbf{b}
\end{gathered}
$$

Similarly, we have:

$$
\mathbf{w}_{2}(t)=e^{\alpha t} \cos \beta t \mathbf{a}-i e^{\alpha t} \sin \beta t \mathbf{a}-i e^{\alpha t} \cos \beta t \mathbf{b}-e^{\alpha t} \sin \beta t \mathbf{b}
$$

With these two equations, it can be seen that:

$$
\begin{aligned}
\mathbf{x}_{1}(t) & =\frac{\mathbf{w}_{1}(t)+\mathbf{w}_{2}(t)}{2} \\
\mathbf{x}_{2}(t) & =\frac{i\left(\mathbf{w}_{2}(t)-\mathbf{w}_{1}(t)\right)}{2}
\end{aligned}
$$

