Math 54 Worksheet

Linear Systems of Differential Equations

Part A

These questions test your knowledge of the core concepts and computations.

1. Transform the following system in to the matrix form.

$$
\begin{aligned}
d x / d t & =\left(t^{3}+2\right) x+2 z \\
d y / d t & =\left(e^{t}-1\right) y+(t-1) z \\
d z / d t & =\left(e^{2 t}+e^{3 t}\right) x+(t+3) y
\end{aligned}
$$

Solution:

$$
\frac{d}{d t}\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{ccc}
t^{3}+2 & 0 & 2 \\
0 & e^{t}-1 & t-1 \\
e^{2 t}+e^{3 t} & (t+3) & 0
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
$$

2. Write down the equivalent linear system of differential equations to the following differential equation.

$$
y^{\prime \prime \prime \prime}(t)+(3 t-2) y^{\prime \prime \prime}(t)+(t+3) y^{\prime}(t)-e^{t} y(t)=0
$$

Solution: let $y_{0}(t)=y(t), y_{1}(t)=y^{\prime}(t), y_{2}(t)=y^{\prime \prime}(t), y_{3}(t)=y^{\prime \prime \prime}(t)$. Then we have

$$
\frac{d}{d t}\left[\begin{array}{l}
y_{0}(t) \\
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
e^{t} & -t-3 & 0 & 2-3 t
\end{array}\right]\left[\begin{array}{l}
y_{0}(t) \\
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
$$

3. Consider the following system of second order differential equations with m and k being positive real numbers:

$$
\left\{\begin{array}{l}
m x_{1}^{\prime \prime}=-2 k x_{1}+k x_{2} \\
m x_{2}^{\prime \prime}=k x_{1}-2 k x_{2}
\end{array}\right.
$$

(a) Using the substitution $y_{i}=m x_{i}^{\prime}$ for $i=1,2$ to tranform the system into a system of first-order differential equation
(b) Write down the matrix form of the equation.

Solution: When we make the substitution, we get $y_{i}^{\prime}=m x_{i}^{\prime \prime}$, hence we have the following matrix form equation

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=\frac{1}{m} y_{1} \\
x_{2}^{\prime}=\frac{1}{m} y_{2} \\
y_{1}^{\prime}=-2 k x_{1}+k x_{2} \\
y_{2}^{\prime}=k x_{1}-2 k x_{2}
\end{array}\right.
$$

In matrix form this equation is

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
y_{1}^{\prime}(t) \\
y_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & \frac{1}{m} & 0 \\
0 & 0 & 0 & \frac{1}{m} \\
-2 k & k & 0 & 0 \\
k & -2 k & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
y_{1}(t) \\
y_{2}(t)
\end{array}\right]
$$

(Aside: this system of equation describes the motion of the spring-mass system shown below with $x_{1}=0$ and $x_{2}=0$ corresponding to the neutral position.

Part B

These questions are generally more challenging, often highlighting important subtleties. They require a deeper understanding of each concept and the interrelations between them.
4. Decide whether these are true or false
$\mathrm{T} \quad \mathrm{F} \quad$ Let $A(t)$ be an $n \times n$ matrix valued function, $g(t)$ is an n-dimensional real valued function. Assume $y_{p}(t)$ is a particular solution to $x^{\prime}(t)=A(t) x(t)+$ $g(t)$. Then all solutions of $x^{\prime}(t)=A(t) x(t)+g(t)$ has the form $x_{h}(t)+p(t)$, where $x_{h}(t)$ is the solution to the homogeneous problem $x^{\prime}(t)=A(t) x(t)$.
$\mathrm{T} \quad \mathrm{F} \quad$ let $x_{1}(t), x_{2}(t), \ldots, x_{n}(t)$ be solutions to the linear system of differential equations $x^{\prime}(t)=A(t) x(t)$, Let $W(t)=\operatorname{det}\left(x_{1}(t), \ldots, x_{n}(t)\right)$ be the wronskian. If $x_{1}(t), x_{2}(t), \ldots, x_{n}(t)$ are linear independent, then $W(t) \neq 0$ for any $t \in \mathbb{R}$

T F If an $n \times n$ matrix A is not diagonalizable, then the dimension of the solution space of $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ is strictly less than n.

Solution:

(a) True, see lecture notes.
(b) True, see lecture notes.
(c) False, see problem 5 as an counterexample.
5. Consider the following system

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

(a) Verify that $\left[\begin{array}{l}e^{t} \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}t e^{t} \\ e^{t} \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 2 e^{t}\end{array}\right]$ are all solutions to the above system.
(b) Determine if $\left\{\left[\begin{array}{l}e^{t} \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}t e^{t} \\ e^{t} \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ e^{2 t}\end{array}\right]\right\}$ is a fundamental solution set.

Solution: We compute

$$
\begin{aligned}
& \frac{d}{d t}\left[\begin{array}{c}
e^{t} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
e^{t} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{c}
e^{t} \\
0 \\
0
\end{array}\right] \\
& \frac{d}{d t}\left[\begin{array}{c}
t e^{t} \\
e^{t} \\
0
\end{array}\right]=\left[\begin{array}{c}
t e^{t}+e^{t} \\
e^{t} \\
0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{c}
t e^{t} \\
e^{t} \\
0
\end{array}\right] \\
& \frac{d}{d t}\left[\begin{array}{c}
0 \\
0 \\
e^{2 t}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
2 e^{2 t}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
e^{2 t}
\end{array}\right]
\end{aligned}
$$

The Wronskian is

$$
\operatorname{det}\left[\begin{array}{ccc}
e^{t} & t e^{t} & 0 \\
0 & e^{t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right]=e^{4 t} \neq 0
$$

So the collection is a fundamental solution set. Note that the matrix is upper triangular so the determinant is easy to compute
6. Consider the following system

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

Solve the above system by diagonalization. Write down the solutions you obtained and verify that they form a fundamental solution set by means of the Wronskian.

Solution:

We diagonalized the matrix before, this matrix has eigenvalues 1 and 4, with corresponding eigenspaces

$$
E_{1}=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\right\} ; E_{4}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

So we have solutions to the system $\left[\begin{array}{c}e^{t} \\ -e^{t} \\ 0\end{array}\right],\left[\begin{array}{c}e^{t} \\ 0 \\ -e^{t}\end{array}\right],\left[\begin{array}{c}e^{4 t} \\ e^{4 t} \\ e^{4 t}\end{array}\right]$
We can plug the functions back in and see that they are indeed solutions. Now, to show that they are linearly independent, we considet the wronskian, which is the determinant of $\left[\begin{array}{ccc}e^{t} & e^{t} & e^{4 t} \\ -e^{t} & 0 & e^{4 t} \\ 0 & -e^{t} & e^{4 t}\end{array}\right]$, we cofactor expand along the first colum to find that

$$
W(t)=e^{t}\left(0-\left(-e^{5 t}\right)\right)-\left(-e^{t}\right)\left(2 e^{5 t}\right)=3 e^{6 t} \neq 0
$$

So the solutions are linearly independent.

