MIDTERM REVIEW 2

JIASU WANG

Make sure you know how to compute:

- (1) determinant of square matrix.
- (2) inner product, norm, distance between two points in \mathbb{R}^n .
- (3) the Gram-Schmidt process

Make sure you know the definition of:

- (1) Vector space. The properties a set should satisfy in order to be a vectors space.
- (2) Subspace. The properties a subset should satisfy in order to be a subspace.
- (3) Linear transformation. The properties a transformation should satisfy in order to be a linear transformation.
- (4) Kernel/Null space, column space, row space, basis.
 - rank $A = \dim \operatorname{Col}(A) = \dim \operatorname{Row}(A)$
 - If A is of size $m \times n$, $n = \dim \operatorname{Nul}(A) + \dim \operatorname{Col}(A)$, $m = \dim \operatorname{Nul}(A^{\top}) + \dim \operatorname{Row}(A)$
- (5) Eigenvalues, eigenvectors and eigenspaces of a matrix.
- (6) Eigenvalues, eigenvectors and eigenspaces of a linear transformation.

Make sure you know how to solve the following problem:

- (1) Linear independent:
 - How to determine if the sets of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ is Linear independent.
 - Solve equation $(\mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_n) \mathbf{x} = 0$. If only trivial solution, linearly independent, otherwise, not.
- (2) Eigenvalue and eigenvector:
 - How to find all the eigenvalues and eigenvectors of matrix A.
 - Solve the characteristic equation, $\det(A \lambda I) = 0$. The roots $\lambda_1, \lambda_2, \dots, \lambda_n$ are eigenvalues. For eigenvalue λ_i , solve equation $(A \lambda_i)\mathbf{x} = 0$. The solution set is the corresponding eigenspace. We may choose the vectors in a basis for the solution set as eigenvectors.
 - How to compute the algebraic and geometric multiplicity of eigenvalues of matrix A.
 - The algebraic multiplicity of eigenvalue λ is its multiplicity as a root of the characteristic equation. The geometric multiplicity of eigenvalue λ is the dimension of the null space of $A - \lambda I$.
- (3) Diagonalize matrix:
 - $n \times n$ matrix A is diagonalizable \iff it has n linear independent eigenvectors \iff For any eigenvalue of matrix A, λ , the algebraic multiplicity of λ equals its geometric multiplicity.
 - How to determine if a matrix A is diagonalizable.
 - Calculate the algebraic and algebraic multiplicity of the eigenvalues of matrix A. If alg. multi. = geo. multi. for all eigenvalues, then A is diagonalizable, otherwise, not.
 - How to diagonalize a matrix.
 - Find all the eigenvalues of $A, \lambda_1, \lambda_2, \dots, \lambda_n$, as well as the corresponding eigenvectors, $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$. Then let $P = (\mathbf{v}_1 \quad \mathbf{v}_2 \quad \dots \quad \mathbf{v}_n)$

$$P^{-1}AP = diag(\lambda_1, \lambda_2, \cdots, \lambda_n).$$

JIASU WANG

- (4) Similar
 - How to determine if matrix A and B are similar.
 - If both A and B are diagonalizable, we only need to check whether A and B have the same set of eigenvalues. If same, $A \sim B$, otherwise, not
 - If only one of two matrices is diagonalizable, then A is not similar to B.
 - The rest case is too complicated and needs the knowledge of Jordan form. I don't think it will be tested in midterm 2.
- (5) Orthogonal:
 - How to determine if the sets of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is orthogonal.
 - Calculate $\mathbf{v}_1 \cdot \mathbf{v}_2$, $\mathbf{v}_1 \cdot \mathbf{v}_3$, $\mathbf{v}_2 \cdot \mathbf{v}_3$. If all zeros, orthogonal, otherwise, not orthogonal.
- (6) Orthonormal:
 - How to determine if the sets of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is orthonormal.
 - Step 1: Calculate $\mathbf{v}_1 \cdot \mathbf{v}_2$, $\mathbf{v}_1 \cdot \mathbf{v}_3$, $\mathbf{v}_2 \cdot \mathbf{v}_3$. If all zeros, orthogonal, otherwise, not.
 - Step 2: calculate $\|\mathbf{v}_1\|$, $\|\mathbf{v}_2\|$ and $\|\mathbf{v}_3\|$. If all 1s, orthonormal, otherwise, not.
- (7) Least squares problem:
 - How to solve the least square problem for A and b
 - Solve $A^{\top}Ax = A^{\top}b$.

The last part is about coordinate system:

- (1) Suppose V is a vector space with a basis $\mathcal{B} = \{b_1, b_2, \cdots, b_n\}$. v is a vector of V.
 - How to compute the \mathcal{B} -coordinate of v
 - Write v as a linear combination of b_1, b_2, \dots, b_n . If $V = \mathbb{R}^n$, then we only need to solve matrix equation

$$(b_1 \quad b_2 \quad \cdots \quad b_n)x = v.$$

Its solution is $[x]_{\mathcal{B}}$.

- (2) Suppose V has another basis $\mathcal{C} = \{c_1, c_2, \cdots, c_n\}.$
 - How to compute the matrix changing basis from \mathcal{B} to \mathcal{C}
 - Calculate the C-coordinate of b_1, b_2, \cdots, b_n

$$\underset{\mathcal{C} \leftarrow \mathcal{B}}{P} = \begin{bmatrix} [b_1]_{\mathcal{C}} & [b_2]_{\mathcal{C}} & \cdots & [b_n]_{\mathcal{C}} \end{bmatrix}, \qquad [x]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} [x]_{\mathcal{B}}.$$

- (3) Suppose $T:V\to V$ is a linear transformation.
 - How to compute the \mathcal{B} -matrix of T
 - Calculate the \mathcal{B} -coordinate of $T(b_1), T(b_2), \cdots, T(b_n)$

$$T_{\mathcal{B}} = \begin{bmatrix} [T(b_1)]_{\mathcal{B}} & [T(b_2)]_{\mathcal{B}} & \cdots & [T(b_2)]_{\mathcal{B}} \end{bmatrix}, \quad [T(v)]_{\mathcal{B}} = T_{\mathcal{B}}[v]_{\mathcal{B}}$$

• What is the relation between the \mathcal{B} -matrix of $T, T_{\mathcal{B}}$ and the \mathcal{C} -matrix of $T, T_{\mathcal{C}}$

$$P_{\mathcal{C}\leftarrow\mathcal{B}}^{-1}T_{\mathcal{C}}P_{\mathcal{C}\leftarrow\mathcal{B}}=T_{\mathcal{B}}$$