MIDTERM REVIEW 2

JIASU WANG

Make sure you know how to compute:
(1) determinant of square matrix.
(2) inner product, norm, distance between two points in \mathbb{R}^{n}.
(3) the Gram-Schmidt process

Make sure you know the definition of:
(1) Vector space. The properties a set should satisfy in order to be a vectors space.
(2) Subspace. The properties a subset should satisfy in order to be a subspace.
(3) Linear transformation. The properties a transformation should satisfy in order to be a linear transformation.
(4) Kernel/Null space, column space, row space, basis.

- $\operatorname{rank} A=\operatorname{dim} \operatorname{Col}(A)=\operatorname{dim} \operatorname{Row}(A)$
- If A is of size $m \times n, n=\operatorname{dim} \operatorname{Nul}(A)+\operatorname{dim} \operatorname{Col}(A), m=\operatorname{dim} \operatorname{Nul}\left(A^{\top}\right)+\operatorname{dim} \operatorname{Row}(A)$
(5) Eigenvalues, eigenvectors and eigenspaces of a matrix.
(6) Eigenvalues, eigenvectors and eigenspaces of a linear transformation.

Make sure you know how to solve the following problem:
(1) Linear independent:

- How to determine if the sets of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ is Linear independent.
- Solve equation $\left(\mathbf{v}_{1} \mathbf{v}_{2} \cdots \mathbf{v}_{n}\right) \mathbf{x}=0$. If only trivial solution, linearly independent, otherwise, not.
(2) Eigenvalue and eigenvector:
- How to find all the eigenvalues and eigenvectors of matrix A.
- Solve the characteristic equation, $\operatorname{det}(A-\lambda I)=0$. The roots $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are eigenvalues. For eigenvalue λ_{i}, solve equation $\left(A-\lambda_{i}\right) \mathbf{x}=0$. The solution set is the corresponding eigenspace. We may choose the vectors in a basis for the solution set as eigenvectors.
- How to compute the algebraic and geometric multiplicity of eigenvalues of matrix A.
- The algebraic multiplicity of eigenvalue λ is its multiplicity as a root of the characteristic equation. The geometric multiplicity of eigenvalue λ is the dimension of the null space of $A-\lambda I$.
(3) Diagonalize matrix:
- $n \times n$ matrix A is diagonalizable \Longleftrightarrow it has n linear independent eigenvectors \Longleftrightarrow For any eigenvalue of matrix A, λ, the algebraic multiplicity of λ equals its geometric multiplicity.
- How to determine if a matrix A is diagonalizable.
- Calculate the algebraic and algebraic multiplicity of the eigenvalues of matrix A. If alg. multi. = geo. multi. for all eigenvalues, then A is diagonalizable, otherwise, not.
- How to diagonalize a matrix.
- Find all the eigenvalues of $A, \lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$, as well as the corresponding eigenvectors, $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$. Then let $P=\left(\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}\end{array}\right)$

$$
P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)
$$

(4) Similar

- How to determine if matrix A and B are similar.
- If both A and B are diagonalizable, we only need to check whether A and B have the same set of eigenvalues. If same, $A \sim B$, otherwise, not
- If only one of two matrices is diagonalizble, then A is not similar to B.
- The rest case is too complicated and needs the knowledge of Jordan form. I don't think it will be tested in midterm 2.
(5) Orthogonal:
- How to determine if the sets of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is orthogonal.
- Calculate $\mathbf{v}_{1} \cdot \mathbf{v}_{2}, \mathbf{v}_{1} \cdot \mathbf{v}_{3}, \mathbf{v}_{2} \cdot \mathbf{v}_{3}$. If all zeros, orthogonal, otherwise, not orthogonal.
(6) Orthonormal:
- How to determine if the sets of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is orthonormal.
- Step 1: Calculate $\mathbf{v}_{1} \cdot \mathbf{v}_{2}, \mathbf{v}_{1} \cdot \mathbf{v}_{3}, \mathbf{v}_{2} \cdot \mathbf{v}_{3}$. If all zeros, orthogonal, otherwise, not.
- Step 2: calculate $\left\|\mathbf{v}_{1}\right\|,\left\|\mathbf{v}_{2}\right\|$ and $\left\|\mathbf{v}_{3}\right\|$. If all 1s, orthonormal, otherwise, not.
(7) Least squares problem:
- How to solve the least square problem for A and b
- Solve $A^{\top} A x=A^{\top} b$.

The last part is about coordinate system:
(1) Suppose V is a vector space with a basis $\mathcal{B}=\left\{b_{1}, b_{2}, \cdots, b_{n}\right\} . v$ is a vector of V.

- How to compute the \mathcal{B}-coordinate of v
- Write v as a linear combination of $b_{1}, b_{2}, \cdots, b_{n}$. If $V=\mathbb{R}^{n}$, then we only need to solve matrix equation

$$
\left(\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right) x=v .
$$

Its solution is $[x]_{\mathcal{B}}$.
(2) Suppose V has another basis $\mathcal{C}=\left\{c_{1}, c_{2}, \cdots, c_{n}\right\}$.

- How to compute the matrix changing basis from \mathcal{B} to \mathcal{C}
- Calculate the C-coordinate of $b_{1}, b_{2}, \cdots, b_{n}$

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=\left[\begin{array}{llll}
{\left[b_{1}\right]_{\mathcal{C}}} & {\left[b_{2}\right]_{\mathcal{C}}} & \cdots & {\left[b_{n}\right]_{\mathcal{C}}}
\end{array}\right], \quad[x]_{\mathcal{C}}=\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}[x]_{\mathcal{B}} .
$$

(3) Suppose $T: V \rightarrow V$ is a linear transformation.

- How to compute the \mathcal{B}-matrix of T
- Calculate the \mathcal{B}-coordinate of $T\left(b_{1}\right), T\left(b_{2}\right), \cdots, T\left(b_{n}\right)$

$$
T_{\mathcal{B}}=\left[\begin{array}{llll}
{\left[T\left(b_{1}\right)\right]_{\mathcal{B}}} & {\left[\begin{array}{lll}
\left.T\left(b_{2}\right)\right]_{\mathcal{B}} & \cdots & {\left[T\left(b_{2}\right)\right]_{\mathcal{B}}}
\end{array}\right], \quad[T(v)]_{\mathcal{B}}=T_{\mathcal{B}}[v]_{\mathcal{B}}}
\end{array}\right.
$$

- What is the relation between the \mathcal{B}-matrix of $T, T_{\mathcal{B}}$ and the \mathcal{C}-matrix of $T, T_{\mathcal{C}}$

$$
\underset{\mathcal{C} \leftarrow \mathcal{B}}{P-1} T_{\mathcal{C}} \underset{\mathcal{C} \leftarrow \mathcal{B}}{P}=T_{\mathcal{B}} .
$$

