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Symmetric quantum signal processing

Quantum signal processing (QSP) [1] finds a set of parameters (called phase

factors) Φ := (φ0, · · · , φd) ∈ [−π, π)d+1, so that the real part of upper-left entry

of the matrix U(x, Φ) ∈ SU(2) gives a desired polynomial f :
f (x) = g(x, Φ) := Re[〈0|U(x, Φ)|0〉], x ∈ [−1, 1], (1)

with

U(x, Φ) := eiφ0Zei arccos(x)Xeiφ1Zei arccos(x)X · · · eiφd−1Zei arccos(x)XeiφdZ. (2)

The SU(2) representation in Eqs. (1) and (2) can be directly translated into a

quantum circuit for performing the following tasks:

eigenvalue transformation f (A) (when A is an Hermitian matrix) [1],

singular value transformations fSV(A) (when A is a general matrix) [2].

For any target function f satisfying (1) deg(f ) = d, (2) the parity of f is (d mod 2),
(3) ‖f‖∞ := maxx∈[−1,1] |f (x)| < 1, the solution to Eq. (1) exists [1, 2].

The number of degrees of freedom in f is only d̃ := dd+1
2 e. Ref. [3] suggests to

be symmetric, i.e.

Φ = (φ0, φ1, φ2, . . . , φd̃−1︸ ︷︷ ︸
reduced phase factors Φ̃

, . . . , φ2, φ1, φ0).

Optimization based method

The problem of finding phase factors can be reformulated as

Φ∗ = argmin
Φ∈[−π,π)d+1,
symmetric.

F (Φ), F (Φ) := 1
d̃

d̃∑
k=1

|g(xk, Φ) − f (xk)|2 , (3)

where xk are the positive nodes of the Chebyshev polynomial T2d̃(x).
Our works lie in:

Characterize all the global minima of the cost function.

Explain this phenomenon: starting from a fixed initial guess, the solution

can always be robustly obtained in practice (even for d as large as 104) [3].

Existence and uniqueness of symmetric phase factors

Theorem 1 Consider any P ∈ C[x] and Q ∈ R[x] satisfying the following
conditions,

1. deg(P ) = d and deg(Q) = d − 1.
2. P has parity (d mod 2) and Q has parity (d − 1 mod 2).
3. (Normalization condition) ∀x ∈ [−1, 1] : |P (x)|2 + (1 − x2) |Q(x)|2 = 1.
4. If d is odd, then the leading coefficient of Q is positive.

There exists a unique set of symmetric phase factors Φ ∈ Dd such that

U(x, Φ) =
(

P (x) iQ(x)
√

1 − x2

iQ(x)
√

1 − x2 P ∗(x)

)
, (4)

where

Dd =
[−π

2 , π
2)d

2 × [−π, π) × [−π
2 , π

2)d
2, d is even,

[−π
2 , π

2)d+1, d is odd.
(5)

Global minima

(P, Q) is said to be an admissible pair of polynomials associated with f if the
conditions in Theorem 1 are satisfied and the leading coefficient ofQ is positive.

If d is odd, there is a bijection between the global minima of Eq. (3) and all
admissible pairs (P, Q).
If d is even, there is a bijection between the global minima of Eq. (3) and all
pairs of polynomials (P, ±Q), where (P, Q) is an admissible pair.

Construction of admissible pairs

Theorem 2 Given a target polynomial f (x), all admissible pairs (P, Q) must
take the following form,

Im[P ] (x) =
√

α
e
(
x + i

√
1 − x2

)
+ e

(
x − i

√
1 − x2

)
2

,

Q (x) =
√

α
e
(
x + i

√
1 − x2

)
− e

(
x − i

√
1 − x2

)
2i

√
1 − x2 ,

(6)

where

F(z) := 1 −
[
f

(
z + z−1

2

)]2

= αe(z)e(z−1), e(z) := z−d
2d∏
i=1

(z − ri). (7)

The value of α ∈ C depends on {ri}2d
i=1, which are roots of the Laurent poly-

nomial F(z),

All the admissible pairs can be constructed by properly choosing {ri}2d
i=1 such

that it is closed under additive inverse and complex conjugate.
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Figure 1. The optimization landscape of the modified cost function F (Φ̃)1/3 over Dd. (a)

f (x) = x2 − 1
2. (b) f (x) = 1√

3x
3 − 2√

3x .

Existence of local minima can be easily observed when deg(f ) ≥ 4.

Maximal solution

Choose {ri}2d
i=1 to be the roots of F(z) within the unit disc. The unique sym-

metric phase factor associated with this admissible pair is called the maximal

solution.

For any target polynomial f with ‖f‖∞ ≤ 1
2, the maximal solution lies in the

neighborhood of Φ0 := (π/4, 0, 0, . . . , 0, 0, π/4). Φ0 is the initial guess used for

the optimization method [3].

Distance between the maximal solution and Φ0

Theorem 3 Let Φ∗ be the maximal solution for the target function f . Denote
Φ̃∗ and Φ̃0 as the corresponding reduced phase factors of Φ∗ and Φ0 respec-

tively. If ‖f‖∞ ≤ 1
2, then ∥∥∥Φ̃∗ − Φ̃0

∥∥∥
2

≤ π√
3

‖f (x)‖∞ . (8)

Local strong convexity

Theorem 4 If the target polynomial satisfies ‖f‖∞ ≤
√

3
20πd̃
, for any symmetric

phase factors Φ of length d + 1 satisfying
∥∥∥Φ̃ − Φ̃0

∥∥∥
2

≤ 1
20d̃
, the following esti-

mate holds: 1
4

≤ λmin
(
Hess(Φ̃)

)
≤ λmax

(
Hess(Φ̃)

)
≤ 25

4
. (9)

When ‖f‖∞ is small enough, projected gradient method can converge

exponentially in a neighborhood of Φ0.

O(log(1/ε)) iterations, independent of any further details of f .

Only use standard double precision arithmetic operations in practice.
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Figure 2. The smallest singular value (σmin) or eigenvalue (λmin) of the Hessian matrix evaluated
at 100 randomly sampled Φ near the optimizer Φ∗ . (a) Without symmetry constraint. (b) With

symmetry constraint.
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