On the energy landscape of symmetric quantum signal processing

Berkeley

Jiasu Wang 1 Yulong Dong ${ }^{1}$ Lin Lin ${ }^{1,2,3}$

${ }^{1}$ Department of Mathematics, University of California, Berkeley, CA 94720, USA
${ }^{2}$ Challenge Institute for Quantum Computation, University of California, Berkeley, CA 94720, USA
${ }^{3}$ Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Symmetric quantum signal processing

Quantum signal processing (QSP) [1] finds a set of parameters (called phase factors) $\Phi:=\left(\phi_{0}, \cdots, \phi_{d}\right) \in[-\pi, \pi)^{d+1}$, so that the real part of upper-left entry of the matrix $U(x, \Phi) \in \operatorname{SU}(2)$ gives a desired polynomial f :

$$
\begin{equation*}
f(x)=g(x, \Phi):=\operatorname{Re}[\langle 0| U(x, \Phi)|0\rangle], \quad x \in[-1,1], \tag{1}
\end{equation*}
$$ with

$$
\begin{equation*}
U(x, \Phi):=e^{\mathrm{i} \mathrm{i}_{0} Z} e^{\mathrm{i} \arccos (x) X} e^{\mathrm{i} \phi_{1} Z} e^{\mathrm{i} \arccos (x) X} \cdots e^{\mathrm{i} \phi_{d-1} Z} e^{\mathrm{i} \arccos (x) X} e^{\mathrm{i} \phi_{d} Z} . \tag{2}
\end{equation*}
$$

The $S U(2)$ representation in Eqs. (1) and (2) can be directly translated into a quantum circuit for performing the following tasks:

- eigenvalue transformation $f(A)$ (when A is an Hermitian matrix) [1],
- singular value transformations $f^{\text {SV }}(A)$ (when A is a general matrix) [2].

For any target function f satisfying (1) $\operatorname{deg}(f)=d$, (2) the parity of f is $(d \bmod 2)$, (3) $\|f\|_{\infty}:=\max _{x \in[-1,1]}|f(x)|<1$, the solution to Eq. (1) exists [1, 2].

The number of degrees of freedom in f is only $\tilde{d}:=\left\lceil\frac{d+1}{2}\right\rceil$. Ref. [3] suggests to be symmetric, i.e.

$$
\Phi=(\underbrace{\phi_{0}, \phi_{1}, \phi_{2}, \ldots, \phi_{\tilde{d}-1}}_{\text {reduced phase factors } \tilde{\Phi}}, \ldots, \phi_{2}, \phi_{1}, \phi_{0}) .
$$

Optimization based method
The problem of finding phase factors can be reformulated as

$$
\begin{equation*}
\Phi^{*}=\underset{\substack{\Phi \in\left[-\pi, \pi, \pi^{d+1}, \\\right. \text { symmetric. }}}{\operatorname{argmin}} F(\Phi), F(\Phi):=\frac{1}{\widetilde{d}} \sum_{k=1}^{\tilde{d}}\left|g\left(x_{k}, \Phi\right)-f\left(x_{k}\right)\right|^{2}, \tag{3}
\end{equation*}
$$

where x_{k} are the positive nodes of the Chebyshev polynomial $T_{2 \tilde{d}}(x)$. Our works lie in:

- Characterize all the global minima of the cost function
- Explain this phenomenon: starting from a fixed initial guess, the solution can always be robustly obtained in practice (even for d as large as 10^{4}) [3].

Existence and uniqueness of symmetric phase factors

Theorem 1 Consider any $P \in \mathbb{C}[x]$ and $Q \in \mathbb{R}[x]$ satisfying the following

 conditions,1. $\operatorname{deg}(P)=d$ and $\operatorname{deg}(Q)=d-1$.
2. P has parity $(d \bmod 2)$ and Q has parity $(d-1 \bmod 2)$
3. (Normalization condition) $\forall x \in[-1,1]:|P(x)|^{2}+\left(1-x^{2}\right)|Q(x)|^{2}=1$. 4. If d is odd, then the leading coefficient of Q is positive.

There exists a unique set of symmetric phase factors $\Phi \in D_{d}$ such that

$$
U(x, \Phi)=\left(\begin{array}{cc}
P(x) & \mathrm{i} Q(x) \sqrt{1-x^{2}} \tag{4}\\
\mathrm{i} Q(x) \sqrt{1-x^{2}} & P^{*}(x)
\end{array}\right)
$$

where

$$
D_{d}= \begin{cases}{\left[-\frac{\pi}{2}, \frac{\pi}{2}\right)^{\frac{d}{2}} \times[-\pi, \pi) \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right)^{\frac{d}{2}},} & d \text { is even }, \\ {\left[-\frac{\pi}{2}, \frac{\pi}{2}\right)^{d+1},} & d \text { is odd. }\end{cases}
$$

Global minima

(P, Q) is said to be an admissible pair of polynomials associated with f if the conditions in Theorem 1 are satisfied and the leading coefficient of Q is positive.

- If d is odd, there is a bijection between the global minima of Eq. (3) and all admissible pairs (P, Q).
- If d is even, there is a bijection between the global minima of Eq. (3) and all pairs of polynomials $(P, \pm Q)$, where (P, Q) is an admissible pair.

Construction of admissible pairs

Theorem 2 Given a target polynomial $f(x)$, all admissible pairs (P, Q) must take the following form,

$$
\begin{aligned}
\operatorname{Im}[P](x) & =\sqrt{\alpha} \frac{e\left(x+\mathrm{i} \sqrt{1-x^{2}}\right)+e\left(x-\mathrm{i} \sqrt{1-x^{2}}\right)}{2}, \\
Q(x) & =\sqrt{\alpha} \frac{e\left(x+\mathrm{i} \sqrt{1-x^{2}}\right)-e\left(x-\mathrm{i} \sqrt{1-x^{2}}\right)}{2 \mathrm{i} \sqrt{1-x^{2}}},
\end{aligned}
$$

where

$$
\begin{equation*}
\mathfrak{F}(z):=1-\left[f\left(\frac{z+z^{-1}}{2}\right)\right]^{2}=\alpha e(z) e\left(z^{-1}\right), \quad e(z):=z^{-d} \prod_{i=1}^{2 d}\left(z-r_{i}\right) \tag{7}
\end{equation*}
$$

The value of $\alpha \in \mathbb{C}$ depends on $\left\{r_{i}\right\}_{i=1}^{2 d}$, which are roots of the Laurent polynomial $\mathfrak{F}(z)$,

All the admissible pairs can be constructed by properly choosing $\left\{r_{i}\right\}_{i=1}^{2 d}$ such that it is closed under additive inverse and complex conjugate.

Figure 1. The optimization landscape of the modified cost function $F(\widetilde{\Phi})^{1 / 3}$ over D_{d}. (a) $f(x)=x^{2}-\frac{1}{2}$. (b) $f(x)=\frac{1}{\sqrt{3}} x^{3}-\frac{2}{\sqrt{3}} x$

Existence of local minima can be easily observed when $\operatorname{deg}(f) \geq 4$.
Maximal solution
Choose $\left\{r_{i}\right\}_{i=1}^{2 d}$ to be the roots of $\mathfrak{F}(z)$ within the unit disc. The unique symmetric phase factor associated with this admissible pair is called the maximal solution.

For any target polynomial f with $\|f\|_{\infty} \leq \frac{1}{2}$, the maximal solution lies in the neighborhood of $\Phi^{0}:=(\pi / 4,0,0, \ldots, 0,0, \pi / 4) . \Phi^{0}$ is the initial guess used for the optimization method [3].

Distance between the maximal solution and Φ^{0}
Theorem 3 Let Φ^{*} be the maximal solution for the target function f. Denote $\widetilde{\Phi}^{*}$ and $\tilde{\Phi}^{0}$ as the corresponding reduced phase factors of Φ^{*} and Φ^{0} respec tively. If $\|f\|_{\infty} \leq \frac{1}{2}$, then

$$
\begin{equation*}
\left\|\tilde{\Phi}^{*}-\widetilde{\Phi}^{0}\right\|_{2} \leq \frac{\pi}{\sqrt{3}}\|f(x)\|_{\infty} \tag{8}
\end{equation*}
$$

Local strong convexity

Theorem 4 If the target polynomial satisfies $\|f\|_{\infty} \leq \frac{\sqrt{3}}{20 \pi d}$, for any symmetric phase factors Φ of length $d+1$ satisfying $\left\|\widetilde{\Phi}-\widetilde{\Phi}^{0}\right\|_{2} \leq \frac{1}{20 d}$, the following estimate holds

$$
\begin{equation*}
\frac{1}{4} \leq \lambda_{\min }(\operatorname{Hess}(\tilde{\Phi})) \leq \lambda_{\max }(\operatorname{Hess}(\tilde{\Phi})) \leq \frac{25}{4} \tag{9}
\end{equation*}
$$

When $\|f\|_{\infty}$ is small enough, projected gradient method can converge exponentially in a neighborhood of Φ^{0}

- $\mathcal{O}(\log (1 / \epsilon))$ iterations, independent of any further details of f.
- Only use standard double precision arithmetic operations in practice.

Figure 2. The smallest singular value ($\sigma_{\text {min }}$) or eigenvalue ($\lambda_{\text {min }}$) of the Hessian matrix evaluated at 100 randomly sampled Φ near the optimizer Φ^{*}. (a) Without symmetry constraint. (b) With symmetry constraint.

References and acknowledgements

1] Guang Hao Low and Isaac LChuang. Optimal hamiltonian simulation by quantum signal processing. Physical review letters, 118(1):010501, 2017
[2] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value transformation and
 .
[3] Yulong Dong, Xiang Meng, K. Birgitta Whaley, and Lin Lin. Efficient phase-factor evaluation in quantum signal processing. Physical Review A, 103(4), Apr 2021
[4] Jiasu Wang, Yulong Dong, and Lin Lin. On the energy landscape of symmetric quantum signal processing. artiv:2110.04993, 2021.
This work was partially supported by the NSF Quantum Leap Challenge Institute (QLCI) program through grant number OMA-2016245 (J.W. Y.D.) by Department of Energy under Grant No. DE-SC0017867 and No. DE-AC02-05CH11231 (L.L.). L.L. is a Simons Investigator.

