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Problem setting

Given a stochastic differential equation (SDE)

dXt = µ(Xt , t)dt + σ(Xt , t)dWt , (1)

we aim to compute
E[P(XT )|X0 ∈ π0]. (2)

X0 follows a initial distribution π0,

T is evolution time,

P(X ) is the payoff function.

Some assumptions:

µ and σ are globally Lipschitz continuous,

P is piecewise Lipschitz continuous.
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Classical Monte Carlo method

The Milstein discretization of strong order 1

X̂k+1 =X̂k + µ(X̂k , tk)h + σ(X̂k , tk)∆Wk

+
1

2
σ(X̂k , tk)∂Xσ(X̂k , tk)((∆Wk)

2 − h).

To achieve a mean-squared error with bound E(Y − E[P])2 ≤ ϵ2,

X̂n approximates XT with E|X̂n − XT | = O(h),

the number of iterations is n = T/h = Ω(1/ϵ),

the number of samples to estimate E[P(XT )] is N = O(1/ϵ2),

the computational cost is O(N/h) = O(1/ϵ3).
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Solve SDE

Apply a numerical scheme of strong order r
(
E|X̂n − XT | = O(hr )

)
.

Theorem 1

Classical Monte Carlo method estimates E[P(XT )] up to
mean-squared error ϵ2 in cost O(ϵ−2−1/r ).

Quantum-accelerated Monte Carlo method (QA-MC) estimates
E[P(XT )] up to additive error ϵ with probability at least 0.99 in cost
O(ϵ−1−1/r ).
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Multilevel Monte Carlo method

Given a sequence P0,P1, . . . ,PL that approximates P

Vl : the variance of one sample of Pl − Pl−1 decreases,

Cl : the cost of one sample of Pl − Pl−1 increases,

Nl : the number of samples of Pl − Pl−1.

We use this estimator to to approximate E[P],

Y =
L∑

l=0

Yl , where Yl :=
1

Nl

Nl∑
i=0

(
P
(l ,i)
l − P

(l ,i)
l−1

)
. (3)

For SDE, P = P(XT ) and Pl − Pl−1 comes from two discrete
approximations with different timesteps but the same Brownian path.
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Multilevel Monte Carlo method

The overall cost and variance of Y is
∑L

l=0NlCl and
∑L

l=0N
−1
l Vl . To

trade off between cost and variance, we consider

min
Nl ,l=0,··· ,L

L∑
l=0

NlCl + λ2

(
ϵ2

2
−

L∑
l=0

N−1
l Vl

)
. (4)

Nl = λ
√
Vl/Cl with λ = 2ϵ−2

∑L
l=0

√
VlCl ,

The total computational cost is

2ϵ−2

(
L∑

l=0

√
VlCl

)2

, (5)

to achieve E(Y − E[P])2 ≤ ϵ2.
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Classical multilevel Monte Carlo method

If there exist positive constants α, β, γ such that α ≥ 1
2 min(β, γ) and

|E[Pl − P]| = O(2−αl),

Vl = O(2−βl),

Cl = O(2γl),

then for any ϵ < 1/e there exists an L such that Y =
∑L

l=0 Yl has a
mean-squared error with bound E(Y − E[P])2 ≤ ϵ2.
Moreover, the total computational cost is{

O(ϵ−2), β ≥ γ,

O(ϵ−2−(γ−β)/α), β < γ.
(6)
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Quantum-accelerated multilevel Monte Carlo method

Theorem 2 (QA-MLMC)

If there exist positive constants α, β = 2β̂, γ such that α ≥ min(β̂, γ) and

|E[Pl − P]| = O(2−αl),

Vl = O(2−βl) = O(2−2β̂l),

Cl = O(2γl),

then for any ϵ < 1/e there is a quantum algorithm that estimates E[P] up
to additive error ϵ with probability at least 0.99, and with costO

(
ϵ−1
)
, β̂ ≥ γ,

O
(
ϵ−1−(γ−β̂)/α

)
, β̂ < γ.

(7)
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Solve SDE

Using a numerical scheme of strong order r ,

α = r − o(1), β = r − o(1), and γ = 1. (8)

Theorem 3

MLMC estimates E[P(XT )] up to mean-squared error ϵ2 in cost{
O(ϵ−2), r > 1,

O(ϵ−1−1/r−o(1)), r ≤ 1.
(9)

QA-MLMC estimates E[P(XT )] up to additive error ϵ with probability
at least 0.99 in cost{

O
(
ϵ−1
)
, r > 2,

O
(
ϵ−1/2−1/r−o(1)

)
, r ≤ 2.

(10)
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Applications

Black-Scholes model:
The asset price is modelled by Geometric Brownian Motion (GBM)

dXt = µXtdt + σXtdWt ,

where σ measures the volatility of the asset and µ is the drift rate.

Local Volatility model:
It generalizes GBM as

dXt = µXtdt + σ(Xt , t)XtdWt ,

by treating volatility σ as a function of the asset Xt and the time t.
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Applications

Option pricing

Lipschitz continuous options

European option: P(XT ) = (XT − K )+ := max{XT − K , 0},
Asian option: P(XT ) =

(
1
T

∫ T

0
Xtdt − K

)+
.

Piecewise Lipschitz continuous options

Digital option
P(XT ) = H(XT − K ),

with the strike K > 0, where H is the Heaviside function.

Other applications:
Greeks (sensitivity of price), Binomial option pricing model, ...
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Summary

Algorithm Model Result

C
la
ss
ic
al

MC with direct sampling Black-Scholes model ϵ−2

MC with scheme of strong order r payoff models of general SDEs ϵ−2−1/r

MLMC with scheme of strong order r > 1 payoff models of general SDEs ϵ−2

MC with binomial sampling binomial option pricing model ϵ−2

Q
u
an
tu
m QA-MC with direct sampling Black-Scholes model ϵ−1

QA-MC with scheme of strong order r payoff models of general SDEs ϵ−1−1/r

QA-MLMC with scheme of strong order r > 2 payoff models of general SDEs ϵ−1

QA-MC with binomial sampling binomial option pricing model ϵ−1

Table: Summary of the time complexities of classical and quantum algorithms for financial
models with the additive error ϵ, in which logarithmic factors are omitted.
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